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Summary

Low BMD in subjects receiving chronic prednisone therapy is attributed to osteoporosis. This study demonstrates that osteomalacia induced by lowering 
of biologically active vitamin D by prednisone induced inhibition of hepatic 25 hydroxyase may also be a major contributing factor.

Abstract

Introduction/ Purpose: Decline in BMD following prednisone therapy is attributed to osteoporosis. However, osteomalacia due to low 125 OH Vitamin 
D and resulting hyperparathyroidism may also be contributors. Therefore, administration of 125 OH vitamin D3, Calcitriol on BMD was examined in 
subjects receiving chronic prednisone therapy and low BMD (T< 2.5) refractory to therapy with bisphosphanate, calcium and vitamin D3, Cholecalciferol.

Methods: 21 subjects, ages 45–56 years receiving prednisone ≥3 years with declining BMD despite therapy with Cholecalciferol, CaCO3 and bisphosphanate 
were divided into 2 groups. Both groups continued Calcium and bisphosphanate. 10 subjects (group 1) received increased dose of Cholecalciferol, 2000 
units daily while in 11 subjects (group 2), it was substituted by Calcitriol. Comprehensive metabolic panels (CMP) including serum calcium and alkaline 
phosphatase as well as 25 OH Vit D and 125 OH Vit D levels were determined every 6 months. BMD was determined at yearly interval.

Results: CMP including calcium and phosphorus remained normal in both groups while alkaline phosphatase declined in group 2 alone. Serum 25 
OH Vit D levels were subnormal (<20 pg/ml) in both groups and normalized (53 ±6 pg/ml) only in group 2. BMD continued to decline in group1 while 
improving (p<0.01) in group 2; BMD being significantly greater than group 1 (p<0.01).

Conclusion: In subjects receiving chronic prednisone therapy, low BMD is induced by multiple mechanisms: osteomalacia caused by decreased 125 OH 
Vit D and osteoporosis caused by matrix collagen breakdown, hypogonadism and secondary hyperparathyroidism. Role of osteomalacia is confirmed 
by rising BMD on substituting active 125 OH vitamin D3, Calcitriol for inactive vitamin D3, Cholecalciferol.
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Introduction 

Occurrence of a significant decline in bone mineral density 
(BMD) following chronic therapy with immunosuppressive agents 
including prednisone in subjects undergoing organ transplant is well 
established [1–4]. Many organizations have recommended repeatedly 
over last several years, use of therapeutic agents in conjunction with 
life style modification including appropriate weight bearing exercises 
as tolerated by individual subject as well as adequate daily intake of 
vitamin D, mostly cholecalciferol 1200 units and elemental calcium, 
1200 - 1500 mg in order to prevent or improve decline in bone mineral 
density [5–10]. Unfortunately though, the progress in implementation 
of these guidelines regarding preventive and therapeutic strategies 
has been apparently slow and less than adequate for unclear reasons 
[11–20]. 

The decline in BMD is mainly attributed to osteoporosis 
secondary to bone resorption [21–25]. However, several other factors 
may contribute to pathogenesis. Central hypogonadism caused by 
suppression of hypothalamic pituitary gonadal axis by prednisone 
may be a contributing factor [26, 27]. Alternatively, osteomalacia 
caused by low circulating biologically active 125 OH vitamin D 
induced via inhibition of hepatic hydroxylase by Prednisone may be 
another major pathophysiologic contributor [28–30]. Therefore, we 
examined impact of administration of biologically active 125 OH 
vitamin D3 (Calcitriol) on BMD in subjects receiving prednisone and 
lack of significant (3%) improvement in low BMD (T < 2.5) despite 
persistent therapy with biologically inert vitamin D3 Cholecalciferol, 
calcium and Risedronate (Proctor and Gamble Pharmaceuticals, 
USA) continuously over prior 3 years. 
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Subjects and Methods

21 adult subjects, 17 women and 4 men with ages 45–56 years 
while receiving prednisone ≥10 mg daily continuously for ≥3 years 
were referred to Endocrinology clinic at an academic Medical Center 
for further assessment and management for lack of improvement 
in low bone mineral density assessed at 2 consecutive years despite 
being concurrently administered daily vitamin D3 (Cholecalciferol) 
1200 units, Calcium carbonate (elemental calcium, 1200- 1500 mg) 
and Risedronate 5 mg. All subjects had received organ transplants, 
e.g. Liver, kidney or heart prior to administration of prednisone 
along with other immunosuppressive agents, cyclosporine and 
methylphenidate. All women had ceased to have menstrual cycles at 
the time of enrollment. Subjects being treated for chronic disorders e.g. 
hypertension, dyslipidemia, diabetes mellitus, coronary artery disease, 
hypothyroidism etc were included if stable while receiving medications 
in the same daily dose for duration of at least 6 months prior to entry 
into the study. Exclusion criteria included hospitalization for surgery, 
myocardial infarction, stroke and uncontrolled diabetes mellitus 
during 6 months prior to entry into the study. Subjects manifesting 
elevated liver enzymes > 2x normal, decreased effective glomerular 
filtration rate < 50 ml / hour and disorders of calcium metabolism and 
inability to sign informed consent were excluded as well.

The subjects were divided into 2 groups. In 10 subjects, 8 women 
and 2 men (group 1), vitamin D3 Cholecalciferol was increased to 
2000 units daily while in group 2 consisting of 11 subjects, 9 women 
and 2 men, Cholecalciferol was substituted by 125 OH vitamin D3 
Calcitriol (Rocaltrol, Validus Pharmaceuticals, Parsippany, New 
Jersey, USA) 0.5 mcg daily . All subjects in both groups continued 
Calcium and Risedronate ( Actonel, Warner Chilcott (US), LLC 
Rockaway, NJ 07866, USA) in the same daily doses. Subjects also 
continued to receive immunosuppressive drugs and other previously 
prescribed medications for management of other disorders in the 
same daily dose. Hormone replacement therapy in post menopausal 
women and testosterone administration in men were continued with 
the same formulations and the same daily dose as well. Comprehensive 
metabolic panels (CMP) including serum calcium, phosphorus and 
alkaline phosphatase as well as 25 OH Vit D and 125 OH Vit D levels 
were determined by local laboratory in all subjects prior to grouping 
and at every 6 months until the end of the period of observation. BMD 
was determined by DEXA using the same equipment (Hologic ) at 
yearly interval. The subjects were followed every 3 months to ensure 
adherence and compliance with therapeutic recommendations as well 
as for adverse events.

Results

In all participants, comprehensive metabolic panels including 
serum urea nitrogen, creatinine, liver enzymes, electrolytes, calcium 
and phosphorus concentrations were all normal prior to the entry into 
study and remained without significant changes at 2 years. However, 
serum alkaline phosphatase levels were normal prior to entry and 
remained unaltered in all subjects in group 1 whereas they were 
elevated in 8 out of 11 subjects in group 2 but declined significantly 
in all subjects individually as well as a group. Serum 25 OH Vit D (< 
20 ng/ml) were subnormal at entry into the study prior to increasing 

the daily dose of Cholecalciferol in group 1 and prior to change over 
to Calcitriol in group 2 and remained unaltered in both groups at the 
end of observation period of 2 years. In contrast, 125 OH Vit D levels 
were subnormal (< 25 pg/ml) in both groups prior to entry into study 
and remained subnormal in group 1 (Table1). Moreover, in subjects 
belonging to group 2, 125 OH Vit D concentrations normalized by 6 
months and remained within normal range at 2 years (Table 1). BMD 
(T score) continued to decline in group1 (Table 2) whereas in group 
2, BMD improved significantly from baseline within a year and the 
improvement was progressive till the end of the study period at 2 years 
(Table2). Thus, BMD in group 2 was significantly greater at both year 
1 and year 2 in comparison to group 1 (p < 0.01).

Table 1: 25 Hydroxy (OH) Vitamin D and 125 OH vitamin D in subjects increasing 
Cholecalciferol daily dose (Group1) and changing to Calcitriol (Group 2)

Time in years -2 -1 0 1 2

25 OH Vit D Group 1 20 ±3 19 ±4 22 ±5 20 ±4 24 ±5

25 OH Vit D Group 2 21 ±3 22 ±5 21 ±4 22 ±5 23 ±5

125 OH Vit D Group 1 18±2 19 ±3 18 ±3 21 ±4 21 ±5

125 OH Vit D Group 2 18±3 19 ±4 19 ±5 48 ±7*† 53 ±6*†

* p < 0.01 vs Group 1
† p < 0.001 VS 0 TIME IN Group 2

Table 2: Bone Mineral density (BMD) in subjects increasing Cholecalciferol daily dose 
(Group1) and changing to Calcitriol (Group 2)

Time in Years -2 -1 0 1 2

BMD Group 1 -2.8±0.2 -3.0±0.3 -2.9±0.3 -3.1±0.3 -3.3±0.1

BMD Group 2 -2.9±0.3 -3.0±0.4 -3.1±0.3 -2.6±0.2*† -2.3±0.1*†

* p<0.05 vs Time 0
† p<0.01 vs Group 1

Discussion 

The decline in BMD in subjects receiving immunosuppressive 
therapy including prednisone may be attributed to multiple factors [21–
30]. Enhanced catabolism of matrix collagen induced by prednisone 
apparently plays a major pathophysiologic role in osteoporosis as 
evident by increased bone resorption [21–26]. Alternatively, central 
hypogonadism caused by suppression of hypothalamic pituitary-
gonadal axis by prednisone is also a contributing factor [27–30]. 
Moreover, osteomalacia due to decline in circulating biologically 
active 125 OH Vitamin D secondary to lowered 25 OH Vitamin D 
due to inhibition of hepatic 25 hydroxylase induced by prednisone 
may facilitate the decline in BMD [31–35]. Finally, secondary 
hyperparathyroidism in response to decreased active vitamin D may 
also promote the decline in BMD [21–26,31–35].

This study demonstrates that BMD continued to decline in 
subjects in group 1 despite increasing the daily dose of vitamin D3, 
Cholecalciferol while continuing other therapeutic strategy including 
drugs. This data is consistent with several previous clinical trials using 
same therapeutic strategies including either drugs inhibiting bone 
resorption or anabolic agents and vitamin D3, Cholecalciferol or its 
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derivative, alfacalcifedol [31,32,34–39]. In contrast, supplementation 
with calcitriol following substitution for Cholecalciferol improved 
bone mineral density markedly in our study (Table 2). Lack of 
improvement or even stability of BMD may be attributed to impaired 
generation of 25 OH vitamin D from Cholecalciferol due to inhibition 
of hepatic 25 hydroxylase by prednisone resulting in persistent lowering 
of biologically active 125 OH vitamin D concentration (Table1). 
Alternatively, a marked rise in biologically active125 OH vitamin 
D levels on administration of Calcitriol instead of cholecalciferol 
(Table1) may have contributed to improvement in BMD via promotion 
of bone mineralization and inhibition of bone resorption induced 
by normalization of PTH. Thus, the decline or lack of stabilization 
or improvement in BMD in subjects receiving prednisone is a 
consequence of osteomalacia and secondary hyperparathyroidism in 
conjunction with bone resorption caused by matrix protein catabolism 
and hypogonadism as described previously. In the final analysis, it is 
apparent that decline in BMD induced by prednisone is multi factorial 
and is induced by osteomalacia due to lack of adequate biologically 
active 125 OH Vitamin D and concurrently increased bone resorption 
secondary to matrix collagen breakdown induced by prednisone 
itself as well as exacerbation by secondary hyperparathyroidism and 
hypogonadism. Moreover, appropriate therapy consisting of Calcitriol 
and adequate calcium supplementation as well as sex hormones and 
antiresorptive or anabolic agents based on pathophysiology alone is 
likely to maintain preservation or promote improvement in BMD in 
subjects receiving chronic prednisone administration. Therefore, we 
recommend that guidelines for management of glucocorticoid induced 
bone disease include calcitriol for vitamin D supplementation as an 
integral part of a total protocol including all therapeutic modalities.
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