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Abstract

Reduced spinal mobility may result in activity limitations and participation restrictions, which could subsequently affect quality of life. This literature 
review examined the effects of aging on spinal range of motion (ROM). Two databases (PubMed and Google Scholar) were searched using the MeSH 
terms spine, aging, range of motion, athlete, human and collagen. Two hundred twenty-four articles were identified; 210 of these were rejected as not 
directly relevant with the current review. The accepted articles (n=14) were categorized into four participant groups (athletes, clinical, elderly, and 
general).  Each of the studies was analyzed and assigned a quality grade using the GRADE system provided by the American Dietetic Association. The 
results suggested that aging causes increased risk for spinal fractures and loss of ROM and bone density.  For women, spinal deformity and vertebral 
compression fractures may lead to impaired mobility and quality of life.  More research is needed on the effects of the aging spine in relation to overall 
health, quality of life and socio-economic status. 
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Introduction

Musculoskeletal function is determined by range of motion 
(ROM), strength, endurance, coordination, and sensation [1]. The 
majority of these physiological parameters (e.g. aerobic power, 
strength, endurance, coordination, and sensation) peak in late 
adolescence and then gradually decline with age [2]. Within the 
musculoskeletal system, part of the aging effect is the increase in 
intramuscular connective tissue stiffness which results in decreased 
ROM and a gradual performance decline in Activities of Daily Living 
(ADL) [3]. 

Range of Motion in Different Populations
The changes that occur with aging, such as loss of lumbar flexion, 

extension and lateral flexion, may be responsible for decreases in 
spinal ROM [3,4]. The motion profile of physically active or athletic 
populations is more difficult to evaluate than the profile of less active 
populations because age-associated differences in the degree of muscle 
damage after exercise in well-trained humans have yet to be clearly 
demonstrated in the literature [5].

Yukawa et al reported mean spinal flexion of 53.0° and 
hyperextension of 23.4° with no difference between the genders [6]. 
Another study reported females decreasing extension and flexion 
ROM slightly more than males between the ages of 20–70 years 
(13.9° and 9.0° vs 16.3° and 8.0°) [4]. Age-related reductions in 
lumbar flexion, extension and lateral flexion were most evident after 
approximately 40 years of age. 

The role of collagen 

It is important to understand the role of collagen and how age-
related changes to collagen matrices are linked to the declining 
mechanical properties of aging bone and joints [4,7]. Physical and 
biochemical changes occur to collagen with increasing age, resulting 
in decreased extensibility. These changes include an increased 
formation of intramolecular and intermolecular cross-links that 
restricts the ability of the collagen fibres to move past each other 
as tissue length changes [3]. Cross-linking involves two different 
mechanisms, one a precise and enzymatically controlled cross-linking 
during development and maturation and the other an adventitious 
non-enzymatic mechanism following maturation of the tissue.  This 
non-enzymatic cross-linking, known as glycation, is the major cause 
of dysfunction of the collagenous tissues in old age.  

The process of cross-linking and the presence of advanced 
glycation end products (AGEs) seem to be major determinants in 
the loss of ROM and strength [8]. AGEs naturally form inside the 
body when proteins or fats combine with sugars (glycation). This 
non-enzymatic reaction affects the normal function of cells, making 
them more susceptible to damage and premature aging. The effect 
of glycation on cell-matrix interactions may be an equally important 
aspect of aging collagen. It is interesting to note that this process is 
accelerated in diabetic individuals due to higher blood glucose levels 
[9]. Although there are 19 genetically distinct human collagens, the 
functions of the more minor collagens have yet to be clarified. Types 
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I and II collagen are found in intervertebral discs.  Aging causes this 
type of collagen to transition into a more fibrotic tissue.

This increased fibrosis, which is associated with degeneration, 
contributes to changes in material properties of the nucleus pulposus 
from a fluid-like to a solid-like material, thus contributing to a more 
brittle, fragile disc [10].   Fragility of aging bone may be related 
to changes in collagen as evidence suggests that altered collagen 
molecules have a detrimental effect on the mechanical properties of 
bone. When bone collagen is damaged due to non-enzymatic cross 
linking, also known as glycation, the bone exhibits increased stiffness, 
ROM, decreased bone strength and reduced stability [6]. 

Aging and hyaline cartilage

The aging process similarly affects muscles, hyaline cartilage and 
joint motion.  Muscle fibers atrophy and cartilage dehydrates, causing 
a loss in elasticity and joint motion restriction that leads to flexibility 
decrease and loss of ROM. The articular surfaces of the human spine’s 
facet joints are covered by hyaline cartilage that serves as an elastic 
load-bearing material responsible for the frictionless movement of 
the surfaces of articulating joints. As the structure of hyaline cartilage 
changes, there is an increased risk of joint inflammation and arthritis 
[11]. The decrease in tensile strength after the third decade of life, 
along with inflammation from repeated injury, overuse in sport, and 
congenital defects may lead to increased risk of osteoporosis [10,12].  

Aging and loss of bone mass

The aging spine is characterized by two parallel but independent 
processes: development of degenerative discogenic changes and 
bone mass reduction. osteoporosis, or reduced bone mineral density, 
increases the risk of stress fractures [13]. In focusing on the relationship 
between these two processes, the American College of Sports 
Medicine underlines the need for further research on osteoporosis 
[14]. One study evaluated factors related to spinal mobility in patients 
with postmenopausal osteoporosis [15]. The researchers found 
that skeletal fractures are an important clinical manifestation of the 
disease, with older female patients the most severely affected. Multiple 
vertebral fractures can result in postural deformities, which could 
cause significant functional impairments in ADLs [15,16] and have a 
significant impact on quality of life. 

Joint Hypermobility

Another important consideration connected to bone health is joint 
hypermobility, which is defined as excessive range of motion with a 
global, whole-body score of 4 or higher on the 9-point Beighton scale 
[17,18]. When considering spinal ROM and aging, available motion in 
the lumbar spine drops by approximately 30% between youth and age 
70 [2,19]. According to Day et al. [20], available hypermobility data 
in general populations are conflicting; they state that some findings 
report reduced bone mineral density in hypermobile participants, 
while others report increases. A study on hypermobile 34-year old 
women not only found significantly lower bone mineral density 
measurements, but some of the participants had already reached 
osteoporotic levels [20]. 

Characteristics of the aging spine

Important characteristics of the aging spine include a decrease 
in collagen and proteoglycan content of the annulus fibrosus and 
nucleus pulposus [21], damage to collagen from cross-linking [22] 
and atrophy of type II muscle fibres.  This damage results in a decrease 
in elasticity and joint motion restriction that leads to a decrease in 
flexibility and loss of ROM [11]. In addition, increased intramuscular 
connective tissue stiffness can result in decreased ROM [3]. Long-term 
complications associated with aging affect spinal health and can cause 
significant functional impairments in activities of daily living [15,16]. 
Since spinal health and mobility are key determinants of whole body 
function, an increase in participation restrictions may result in a 
perceived quality of life change that is usually detrimental [23]. 

To our knowledge, no systematic review exists that examines the 
relationship between aging and spinal ROM. Therefore, the aim of 
this review was to investigate the role of aging and its effects on spinal 
range of motion, with a deliberate focus on athletic, elderly, clinical 
and general populations. 

Methods

Two databases were searched (PubMed and Google Scholar) 
between July and September 2013 and again in September 2017, using 
the following Medical Subject Heading (MeSH) terms:  spine, aging, 
athlete, range of motion, human, collagen.   Research studies were 
rejected if they did not meet the one of following criteria: English 
language, human participant, observational study, longitudinal study 
and case study. The initial search produced 224 articles of which 21 
were immediately removed for being animal studies.  A further 132 
were removed for being unrelated to the MeSH terms and 11 articles 
were removed because they were not applicable or did not meet the 
quality requirements of the ADA (American Dietetic Association) 
Evidence Manual. The remaining 60 studies were rated on a scale of 
1 to 3, with 3 being the lowest quality (Limited), 2 being studies with 
minor methodological concerns (Fair) and 1 being the highest quality 
with strong design and free from bias (Good). Studies not meeting 
these criteria were excluded. An additional 46 articles were eliminated 
as they either did not pertain to the question being addressed, or were 
inconclusive in their findings (Table 1). Of the 14 retained papers, 6 
were review articles and were manually checked to identify any missed 
studies that may have related to the subject; none were found. The 
accepted articles were categorized into the following populations: 
athletes, clinical, general and elderly.  The athlete group consisted of 
all studies mentioning the word athlete, sports or exercise. The clinical 
group included clinical trials or research and the elderly group included 
studies mentioning the term elderly or aging populations.  The general 
group consisted of all other studies which did not fall into the athlete, 
clinical, or elderly categories (Figure 1).

Results

Athlete population

Although the athlete category yielded four papers specifically 
mentioning athletes, exercise, sport, competition and sports injuries, 
useful information was gleaned from only one paper relating 
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Figure 1: Prisma and exclusion flow chart here.

Table 1: Categories table

Article Participants Method Quality Grade Significance Conclusion

8 A R II Focus on degenerative Role of enthesopathies in ROM changes

27 G MR II Poor cellular nutrition Tissue degeneration leads to osteoarthritis

40 E O II Focus on aging spinal disorders Link spinal disorders to ROM loss

16 E R II Focus on structural changes due to age Further study is crucial for understanding the unique biomechanical 
function of the aging spine

23 E R II Age-associated conditions Implications on elderly limited mobility and Quality of Life 

43 E OBS I Compares healthy and ageing degenerated 
discs

Connects endplate damage to Degenerative Disk Disease 

13 E OBS I Aging disc and collagen changes Both collagen and proteoglycans undergo age-related changes

33 E R II Age is a primary risk for dev. Of OA More data is needed to understand age-related changes that lead to 
Osteoarthritis

49 C R II Collagen changes and joint function 
relating to OA

Aging impacts reparative abilities that can lead to Osteoarthritis and 
loss of ROM

42 C OBS I Links muscle atrophy with low back pain Pilates improves ROM in trunk and pelvic segments

Key: A: Athletes G: General E: Elderly C: Clinical 

Methodology: R: Review MR: Mini-review O: Overview OBS: Observational



Janine Bryant (2018) The Effect of Age on Spinal Range of Motion:  A Review

Ageing Sci Ment Health Stud, Volume 2(3): 4–7, 2018

to ROM or exercise in relation t.o biomechanical function and 
aging. The review by Benjamin et al. [24] discussed the structure-
function correlations of entheses on both the hard and soft tissues 
with attention paid to mechanical factors that influence form and 
function.   It explored the relationship between entheses and exercise, 
and emphasized the degenerative, rather than inflammatory nature of 
most enthesopathies (pathological changes at an enthesis) in sport. 
This study is relevant because, as stated by the authors, the tendon-
ligament complex response to loading allows for multi-axis bending, 
such as in the lumbar spine.  It applies to diseases associated with the 
spondyloarthritides (SpA) including ankylotic spondylitis, psoriatic 
arthritis, reactive arthritis and undifferentiated SpA, all of which 
may have deleterious effects on ROM [24]. The removed papers 
addressed bone formation and fracture healing, evaluation of changes 
in T1rho and T2 relaxation time in the meniscus using 3.0 T MRI in 
asymptomatic knees of marathon runners, tissue engineered strategies 
for skeletal muscle injury and post-meniscectomy qualitative risk 
analysis considering high BMI and pre-existing osteoarthritis.

Clinical population 

In the clinical category, osteoarthritis (OA) was discussed in one 
of the three retained papers.   In their review, authors Sinkov and 
Cymet [25] discuss imbalance of joint function as an initiator of the 
disease process worsened through changes in the collagen in the joint. 
The authors describe OA as a non-inflammatory disease characterized 
by progressive loss of joint articular cartilage resulting in pain and 
deformity and most present in populations over the age of 65, an 
element that can significantly affect quality of life (QoL). Some risk 
factors for primary OA include increasing age or history of injury to 
the joint from trauma, repetitive stress or inflammation.  

 The prevailing explanation for the onset of OA is a progressive 
fatigue failure, or prolonged wear and tear [12,15,25,26]. This explains 
the increase in incidence of OA with age, as well as its prevalence 
in joints that are overloaded or overused, such as the ankle in ballet 
dancers [10], or the elbow in baseball pitchers [25]. 

The second paper in this category discusses lumbopelvic flexibility 
and stability as affected by Pilates training utilizing forty healthy male 
and female volunteers with a mean age of 31.65 ± 6.21 yrs [27]. The 
study was retained not because it utilized Pilates as a therapeutic 
measure, but because it examined asymptomatic individuals 
exhibiting an inability to control lumbo-pelvic stability; this may be an 
early detection sign for spinal problems [27]. This study indicated that 
Pilates could be used as an adjunctive exercise program to improve 
flexibility, enhance control-mobility of the trunk and pelvic segments 
and, more relatedly, may also prevent and attenuate the predisposition 
to axial musculoskeletal injury. 

The third study [8] examines the effect of strenuous exercise 
on the turnover rate of collagen and included a discussion on the 
molecular mechanisms involved in the aging of collagen, increase in 
stiffness and the process of enzymatic and non-enzymatic collagen 
cross-links.   The authors reported age-related changes in bone, 
tendon, articular cartilage and the matrix protein glycation leading to 
formation of intermolecular cross-linking, thereby affecting optimal 

mechanical functioning of tissue. This process clearly has relevance to 
aging and exercise because the slow turnover of aging collagen results 
in an accumulation of advanced glycation end-products. This also can 
be described as an oxidation rendering the collagen fibres too stiff 
for optimal functioning. This publication is somewhat limited in that 
its findings showed that, although strenuous sports training regimes 
increase tensile strength of bone and tendon, further understanding of 
the mechanisms of collagen turnover and cross-linking are needed to 
improve understanding of the problems caused by exercise and injury 
recovery [8]. The paper was ultimately retained in our study for its 
focus on glycation and the aging of connective tissue via the process of 
collagen cross-linking.

General population 

The first of two studies retained in this category, identified as 
mini-review, addresses transport properties of cartilaginous tissues in 
relation to their cellular nutrition as it applies to articular cartilage. 
Poor cellular nutrition in cartilaginous tissues is believed to be a 
primary source of tissue degeneration that results in OA or disc 
degeneration [4]. Transport properties include: 

1.	 Solute diffusivities that are significant because, due to the 
avascular nature of cartilaginous tissue, diffusion of solutes 
through the tissue extracellular matrix plays an integral role in 
cellular nutrition; 

2.	 Hydraulic permeability as an important property of cartilage 
because water is the major component of the tissue and is an 
important factor governing the rate of fluid transport; and, 

3.	 Effect of mechanical loading of tissue that significantly affects the 
transport of fluids and solutes through the tissue, but is dependent 
on the type of loading (i.e., dynamic vs. static loading). 

Intolo et al. [10] focused in their review on the effect of age on 
lumbar ROM.  They stated that, although lumbar ROM reduces with 
advancing age, it is still unclear how this reduction occurs across 
different age categories. Furthermore, they stressed the importance 
of determining if movement reduces with age and whether it does so 
consistently across different age strata.  There were several limitations 
in this study including that some relevant published studies were 
not identified due to either alternative keywords or poorly worded 
abstracts.   However, the paper was retained herein for its potential 
value to clinicians by providing normative data on the expected loss of 
lumbar ROM in healthy aging individuals. The article demonstrated 
age-related reductions in lumbar flexion, extension and lateral flexion, 
losses in flexibility that are most evident after approximately 40 years 
of age.

Elderly population 

Eight papers were found on the aging process of the spine or 
musculoskeletal system.  The first was an overview discussing aging 
on intervertebral discs (IVDs), endplates, facet joints, muscles and 
ligaments, and the vertebral body. Papadakis et al. [28] linked a 
number of painful disorders to aging of the spine, including loss 
of bone mass, disc degeneration, facet degeneration, disc bulging, 
facet hypertrophy and ligamentum flavum hypertrophy. These may 
contribute to compromised biomechanics and ROM loss.  
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The second paper [29], reported an overview of the mechanisms 
of aging in the spine that cause structural changes and injury risk 
affecting biomechanics and ROM. However, the review did not 
address other mechanisms of degeneration beyond advancing age, 
stating that further study is required to understand the mechanisms 
of degeneration and the unique biomechanical function of the aging 
spine.  

The third paper retained from the elderly category focused on 
aging in the musculoskeletal system [30]. The paper focused mainly on 
age-associated conditions involving the bones, muscles and peripheral 
joints; the research was broader in that it included musculoskeletal 
disorders and a range of interactive conditions such as fibromyalgia 
and tendinopathy that affect soft tissues, tendons and ligaments, bones 
and osteoporosis, IVD, and muscular conditions like polymyalgia and 
myopathies. Implications of musculoskeletal disorders on the public 
health of elderly persons from the perspectives of physical and social 
impacts caused by pain was presented, including limited mobility and 
reduced QOL [30].  

An observational study was found [22] which aimed to investigate 
the presence, localization and abundance of cells expressing 
notochordal cell markers in human lumbar discs during degeneration. 
Postembryonic vestiges of the notochord were found in the nucleus 
pulposus of human IVDs. This research suggests a correlation 
between cells with an immuno-histochemical notochordal phenotype 
that do not exhibit typical morphology of notochordal cells and early 
degenerative changes, particularly granular matrix changes. The 
researchers studied two groups of specimens, the first being lumbar 
motion segments that were removed from 30 deceased individuals 
between 26 weeks of fetal gestation and 86 years of age. 

None in this group had a known history of back problems or pain. 
The second group was comprised of 38 disc samples that had been 
obtained during surgery for painful lumbar disc degeneration and/or 
disc herniation (protrusion, extrusion, or sequestration). The samples 
were obtained from individuals (23 males, 15 females; age range 26–
69 years) with known clinical symptoms, radiological features, and 
histological degree of disc degeneration. 

The loss of cells with typical notochordal phenotype (physaliferous) 
and the coincident onset with signs of disc degeneration leads to 
speculations about their role in the preservation of disc function. 
Although interspecies comparison—premature loss of notochordal 
cells from chondrodystrophic breeds with higher incidence of 
intervertebral disc degeneration—gave some support for this idea. 
This study, was promising as the first study analyzing the presence 
of cells with notochordal phenotype and age-related changes of adult 
human discs. However, the authors state that conclusive evidence for 
this hypothesis is still missing and, therefore, this paper was ultimately 
removed. 

According to Rajasekaran et al. [31], chronic overuse of the 
immature spine is related to endplate damage leading to degenerative 
disk disease (DDD). This study was observational in nature, focused on 
DDD and discussed decreased nutrition as the final common pathway 
for DDD and endplate (EP) damage. EP damage affects diffusion 
and, therefore, disc nutrition. The authors found that damage to the 

endplate may be the initiating factor for disc degeneration by both 
altering the mechanical environment and affecting the nutritional 
pathways. This study is also the first in literature to document the 
feasibility of pharmacological modulation of endplate vascularity and 
disc diffusion, but is purely a radiological assessment of degeneration, 
thus, the clinical symptoms have not been considered. Another 
limitation of the research is that disc degeneration, being an ongoing 
phenomenon, requires a serial longitudinal and in-vivo study, which, 
as stated by the authors, was not performed. It would have been useful 
to have histologically supportive data to explain the changes in the 
endplate and nucleus pulposus.

Research by Singh et al. [32] discussed age-related changes in the 
human intervertebral disc. The aim of this study was to characterize 
age-related changes in the matrix of human intervertebral discs 
from the third to eighth decade of life with a focus on collagen 
and proteoglycan composition.   It utilized background data of 
disc degeneration as associated with changes in the concentration 
and fragmentation of matrix molecules. Forty-six discs of human 
thoracolumbar spines (T11-L5) aged 32 through 80 years were 
analyzed. However, the authors did not include the youngest age 
group (31–40-years old) in their analysis because it is difficult to 
obtain IVD specimens in this age group due to the relatively low rate 
of mortality. DNA, collagen and proteoglycan contents were measured 
using chemical assays while small non-aggregating proteoglycan levels 
were analyzed by comparative Western blotting.  The paper concludes 
that large proteoglycans play a major role in water retention, while 
small proteoglycans regulate formation of the extracellular matrix. 
During aging, proteoglycan and collagen levels decrease, while 
some small proteoglycans show differing patterns of changes in both 
the inner and outer nucleus pulposus and annulus fibrosus. The 
concentration of biglycan increases in all three disc compartments 
with age, while decorin content declines. The decrease in total 
collagen and proteoglycan content may increase susceptibility in IVD 
degeneration. The authors concluded that the functional significance 
of these changes needs further investigation. 

The seventh study found in this category was a review that 
discussed age related changes in the musculoskeletal system and the 
development of osteoarthritis [12]. Although this paper duplicated 
much of what was collected from other studies in this category, this 
is the first paper to mention Vitamin D deficiency as a risk factor for 
OA (possibly contributing to oxidative stress symptoms).  In addition, 
this study links formation of advanced glycation end products (AGEs) 
to the modification of collagen resulting in increased cross-linking 
of collagen molecules. Formation of excessive collagen cross-links 
affects the biomechanical properties of cartilage resulting in increased 
stiffness, more brittle cartilage,and increased susceptibility of the 
tissue to fatigue failure.   

The eighth and final study [33] aimed to establishing radiographic 
standard values for cervical spine morphometry, alignment, and 
ROM, and included 1,230 asymptomatic male and female subjects 
between ages 30 and 80.  Subjects underwent anteroposterior (AP), 
lateral, flexion and extension radiography of the cervical spine. AP 
diameters of the spinal canal, vertebral body and disc were measured 
at each level from the 2nd to the 7th cervical vertebra (C2-C7), with 
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sagittal alignment and ROM during flexion and extension calculated 
using a computer digitizer. Findings included the AP diameter of the 
spinal canal and disc height decreased gradually with increasing age 
as well as extension ROM decreasing more than the flexion ROM, and 
lordotic alignment progressing with increasing age. In addition, the 
study found there was a significant difference in C2-C7 alignment and 
ROM between males and females, with cervical lordosis and thoracic 
kyphosis increasing more with age in females than in males.  Although 
the study had several limitations, including possible measurement 
errors, difficulty in achieving uniform positions of the vertebrae 
in relation to the X-ray beams in different positions of motion and 
measurement being performed only once due to the large sample 
size, it was ultimately retained in our review as it establishes standard 
values and age-related changes in cervical anatomy, alignment and 
ROM (Table 1).

Discussion

Reduced spinal mobility may result in activity limitations and 
participation restrictions, which could subsequently affect quality of 
life. This literature review examined the effects of aging on spinal range 
of motion (ROM). This research relates to current available research 
and offers a deeper inquiry into spinal ageing specifically.   When 
investigating how the spine ages, there were several significant 
subcategories found in the literature.   Among those specific to 
aging, were aging and articular cartilage, aging and flexibility/ROM, 
aging of specific spinal regions (cervical, thoracic, lumbar), special 
considerations of the aging athlete, aging and osteoarthritis, aging and 
muscle strength, bone and aging, and the role of collagen in aging and 
ROM.   In considering ROM and aging, entheses were discussed as 
common sites of overuse, exploring the relationship between entheses, 
enthesopathies and exercise drawing attention to degeneration rather 
than inflammation as histological evidence of the most common 
enthesopathies rarely demonstrates evidence of inflammation within 
the affected entheses.  In this respect, spinal ROM is affected because 
the tendon-ligament response to loading allows for multi-axis 
bending, such as in the lumbar spine [26]. With regards to specific 
pathologies related to ROM and aging, osteoarthritis, being non-
inflammatory, causes joint pain and damage which is progressively 
degenerative, the clinical presentation being deep localized pain with 
stiffness, especially in OA of the spine, which also can result in pain 
and weakness.  

Findings, especially in the elderly population, focused on 
degenerative disorders of the aging spine including disc and facet 
degeneration, facet hypertrophy and loss of bone mass over time 
as contributors to compromised biomechanics and ROM loss [26]. 
Finally, in the general category, degeneration was again a theme with 
focus on poor cellular nutrition in cartilaginous tissues being the 
primary cause of tissue degeneration resulting in OA (in the case of 
articular cartilage degeneration) or disc degeneration especially of the 
intervertebral discs [34], both leading to back pain and loss of ROM.

The process of aging affects all of the body systems including 
the spine. The literature links loss of bone density and flexibility to 
increased risk for postural changes and disc fractures that contribute 
to loss of range of motion and participation in activities of daily living. 

Quality of life is affected as aging populations experience decreased 
mobility due to age-related changes in spinal health. Information 
found, especially relating to collagen, points to physical and 
biochemical changes to collagenous frameworks with increased age 
resulting in decreased extensibility especially in aging skeletal muscle. 
Collagenous structural changes, regardless of type, cause degenerative 
effects in the mechanical properties of bone, tendons, ligaments and 
cartilage. 

Aging affects intervertebral disks, endplates, facet joints, muscles 
and ligaments. This can lead to degenerative conditions such as disc 
degeneration, loss of bone mass, facet degeneration, bulging discs, 
facet hypertrophy and ligamentum flavum hypertrophy. Athletic, 
clinical, general and elderly populations experience these changes in 
various ways depending on age, activity level, and genetic disposition, 
with the major commonality being compromised biomechanics and 
loss of range of motion. Aging bone in shows an increased risk for 
development of osteoporosis thereby increasing the risk for stress 
fractures, especially in older females. 

The limitations to the present study was the lack of available 
research into the ageing human spine as related to different populations 
and ROM. Continued research into the process of spinal aging, and 
how it affects range of motion and quality of life, with particular focus 
on the spinal segments, surrounding muscles, vertebrae and discs, 
is warranted based on this review. Further research will enable an 
increasingly aging population worldwide to benefit from findings. The 
overall goal is to promote spinal health and identify preventive and 
therapeutic interventions that will increase or maintain spinal range 
of motion, thereby allowing individuals to continue participation in 
activities of daily living and to enjoy an overall increased quality of life.
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