Article Page

Abstract

A quantum information theory is derived for multidimensional signals scaling. Dynamical data modeling methodology is described for decomposing a signal in a coupled structure of binding synergies, in scale-space. Mass conservation principle, along with a generalized uncertainty relation, and the scale-space wave propagation lead to a polynomial decomposition of information. Statistical map of data, through dynamical cascades, gives an effective way of coding and assessing its control structure. Using a multi-scale approach, the scale-space wave information propagation is utilized in computing stochastic resonance synergies (SRS), and a data ensemble is conceptualized within an atomic structure. In this paper, we show the analysis of multidimensional data scatter, exhibiting a point scaling property. We discuss applications in image processing, as well as, in neuroimaging. Functional neuro-cortical mapping by multidimensional scaling is explained for two behaviorally correlated auditory experiments, whose BOLD signals are recorded by fMRI. The point scaling property of the information flow between the signals recorded in those two experiments is analyzed in conjunction with the cortical feature detector findings and the auditory tonotopic map. The brain wave nucleons from an EEG scan, along with a distance measure of synchronicity of the brain wave patterns, are also explained.

Keywords

Evaluation, Inverse Molecular Design Algorithm, Model Binding Site, In silico predicted, computer-aided molecular designed CTLA-4 blockador, increasement, antigen-specific CD8+ T-cells, inprevaccinated patients, melanoma, new cluster, algorithms, Large-Scale Protein-Ligand Docking experiment, inverse design, scoring function, protein-ligand interaction, cytochrome c peroxidase, dead-end elimination, drug design

Article Type

Research Article – Abstract

Publication history

Received: Sep 20, 2017
Accepted: Sep 25, 2017
Published: Oct 01, 2017

Citation

Grigoriadis Ioannis, Grigoriadis George, Grigoriadis Nikolaos, George Galazios (2017) Stochastic Resonance Synergetics― Quantum Information Theory for Multidimensional Scaling SMAR1-derived P44 peptide retains its tumor suppressor function through modulation of p53.novel chemo-hyperstructure as a novel drug discovery dual targeting of the p53 and NF-κB pathways for the activation of the p53 tumor suppressor pathway by an engineered P44 cyclotidomimic agonisitic mechanistic pharmacoligand.

Authors Info

Grigoriadis Nikolaos
Department of IT Computer Aided Personalized Myoncotherapy, Cartigenea-Cardiogenea, Neurogenea-Cellgenea, Cordigenea-HyperoligandorolTM,
Biogenea Pharmaceuticals Ltd,
Thessaloniki, Greece;

Grigoriadis Ioannis
Department of Computer Drug Discovery Science, BiogenetoligandorolTM,
Biogenea Pharmaceuticals Ltd,
Thessaloniki, Greece;

Grigoriadis George
Department of Stem Cell Bank and ViroGeneaTM,
Biogenea Pharmaceuticals Ltd,
Thessaloniki, Greece;

George Galazios
Professor of Obstetrics and Gynecology,
Democritus University of Thrace,
Komotini, Greece;

E-mail: biogeneadrug@gmail.com