Article Page

Abstract

The effectivenes of cancer vaccines in inducing CD8+Tcell responses remains a challenge, resulting in a need for testing more potent adjuvants. In previous clinical trials it has been determined the safetyand immunogenicity of vaccination against melanoma-related antigens employing MART-1,gp100, and tysosinase paptides combined with the TLR-9 agonist PF-3512676 and local GM-CSFin-oil emulsion.Using continuous monitoring of safety and a two-stage design for immunological efficacy, More than 20 immune-response evaluable patients were targetted. Vaccinations were given subcutaneously ondays 1 and 15 per cycle (1 cycle=28 days) for up to 13 cycles. Structure-based virtual screening of molecular compound libraries is a potentially powerful and inexpensive method for the discovery of novel lead compounds for drug development. That said, virtual screening is heavily dependent on detailed understanding of the tertiary or quaternary structure of the protein target of interest, including knowledge of the relevant binding pocket. Here, in Biogenea we have for the first time discovered a Safe and immunogenic pharmacophore activator mimic physicochemical properties of the MART-1 (26-35,27L), gp100 (209-217, 210M), and tyrosinase (368-376, 370D) inadjuvantwith PF-3512676 and GM-CSF as a future anti-cancer agent in metastatic melanoma conditions introducing a novel multi-parametric algorithm drug discovery approach using a Ligand-Based Virtual Screening approach through a Support Vector Machine and Information Fusion attempt.

Article Type

Research Article – Abstract

Publication history

Received: Sep 20, 2017
Accepted: Sep 25, 2017
Published: Oct 01, 2017

Citation

Grigoriadis Ioannis, Grigoriadis George, Grigoriadis Nikolaos, George Galazios (2017) Computer designed of a Safe and immunogenic pharmacophoric activator mimicking physicochemical properties of the MART-1 (26-35,27L), gp100 (209-217, 210M), and tyrosinase (368-376, 370D) inadjuvantwith PF-3512676 and GM-CSF with promising clinical outcome in metastatic melanoma using a new cluster of algorithms and a Ligand-Based Virtual Screening approach through a Support Vector and Information Fusion Bayesian Machine.

Authors Info

Grigoriadis Nikolaos
Department of IT Computer Aided Personalized Myoncotherapy, Cartigenea-Cardiogenea, Neurogenea-Cellgenea, Cordigenea-HyperoligandorolTM,
Biogenea Pharmaceuticals Ltd,
Thessaloniki, Greece;

Grigoriadis Ioannis
Department of Computer Drug Discovery Science, BiogenetoligandorolTM,
Biogenea Pharmaceuticals Ltd,
Thessaloniki, Greece;

Grigoriadis George
Department of Stem Cell Bank and ViroGeneaTM,
Biogenea Pharmaceuticals Ltd,
Thessaloniki, Greece;

George Galazios
Professor of Obstetrics and Gynecology,
Democritus University of Thrace,
Komotini, Greece;

E-mail: biogeneadrug@gmail.com