Article Page

Abstract

Stimulating an immune response against cancer with the use of vaccines remainsa challenge. We hypothesized that combining a melanoma vaccine with interleukin-2, an immuneactivating agent, could improve outcomes. In a previous phase 2 Research Scientific Project, patients with metastaticmelanoma receiving high-dose interleukin-2 plus the gp100:209–217(210M) peptide vaccine hada higher rate of response than the rate that is expected among patients who are treated withinterleukin-2 alone. We here, present an evolutionary algorithm that works in conjunction with existing open-source software to automatically optimize candidate ligands for predicted binding affinity and other druglike properties. We used the rules of click chemistry to guide optimization, greatly enhancing synthesizability. Here, we have for the first time disxovered a computer simulated gp100 Peptide mimic designed pharmacophore as a Vaccine-like and Interleukin-2 superagonist in Patients withAdvanced Melanoma using an Improved Algorithm for Chemically Tractable, Semi-Automated Protein Inhibitor Design.

Article Type

Research Article – Abstract

Publication history

Received: Sep 20, 2017
Accepted: Sep 25, 2017
Published: Oct 01, 2017

Citation

Grigoriadis Ioannis, Grigoriadis George, Grigoriadis Nikolaos, George Galazios (2017) A computer simulated gp100 Peptide mimic designed pharmacophore as a Vaccine-like and Interleukin-2 in silico generated superagonist with potential clinical effect in Patients with Advanced Melanoma using an Improved Algorithm for Chemically Tractable, Semi-Automated Protein Inhibitor Design.

Authors Info

Grigoriadis Nikolaos
Department of IT Computer Aided Personalized Myoncotherapy, Cartigenea-Cardiogenea, Neurogenea-Cellgenea, Cordigenea-HyperoligandorolTM,
Biogenea Pharmaceuticals Ltd,
Thessaloniki, Greece;

Grigoriadis Ioannis
Department of Computer Drug Discovery Science, BiogenetoligandorolTM,
Biogenea Pharmaceuticals Ltd,
Thessaloniki, Greece;

Grigoriadis George
Department of Stem Cell Bank and ViroGeneaTM,
Biogenea Pharmaceuticals Ltd,
Thessaloniki, Greece;

George Galazios
Professor of Obstetrics and Gynecology,
Democritus University of Thrace,
Komotini, Greece;

E-mail: biogeneadrug@gmail.com